Chapter 20 Safety Programming in the PLC

Introduction

In engineering, redundancy is the duplication of critical components or functions of a system with the intention of increasing reliability of the system, usually in the form of a backup or fail-safe, or to improve actual system performance.

In many safety-critical systems, some parts of the control system may be triplicated, which is formally termed triple modular redundancy (TMR). An error in one component may then be out-voted by the other two. In a triply redundant system, the system has three sub components, all three of which must fail before the system fails. Since each one rarely fails, and the sub components are expected to fail independently, the probability of all three failing is calculated to be extraordinarily small; often outweighed by other risk factors, such as human error. Redundancy sometimes produces less, instead of greater reliability – it creates a more complex system which is prone to various issues, it may lead to human neglect of duty, and may lead to higher production demands which by overstressing the system may make it less safe.

What is the difference between fault-tolerant designs and fail-safe designs? A fault-tolerant system is designed to avoid total service failure caused by faults at any single point. Typically, a fault-tolerant design applies redundancy or multiple safety barriers to enable the system to continue its intended mission, possibly with reduced performance or increased response time in the event of some partial failure, rather than to fail completely. An example of a fault-tolerant design is an aircraft with multiple engines, so that it will keep flying even if one of the engines failed. A fail-safe system is designed to fail in a safe and controlled manner, so that the failure will not endanger lives or properties, or at least be no less safe than when it is operating correctly. For example, the brakes on a train are designed to apply when the brake control system fails, to ensure safety by stopping the train. It must be noted that a fail-safe system can also suffer 'wrong-side failure', as when, for example, a malfunctioning traffic light shows green rather than flashing red or goes dark; but is to have a very low probability of this occurring. In some cases, it may not be acceptable for one or even more failures to cause a system to cease functioning. Unlike a fail-safe system that puts safety ahead of function or mission objective, a 'failoperational' system will continue to operate in spite of control systems failure. An example is the thermostats in home air-conditioners.

PLC Systems use Fail-Safe Technology

Industrial automation is now considerably more flexible and open. Modern machines and systems also stand out due to their significantly increased productivity. This is due in no small part to the fact that relay technology has been replaced by the freely programmable controller and decentralization – at least for demanding applications. In spite of this change in technology, very different products and systems were often used until now for safety-oriented functions and standard tasks. If more complex safety tasks are involved, however, the efficiency of an automation solution can be significantly increased even if the safety technology consistently follows the trend toward intelligent PLCs.

A fail-safe PLC serves to control processes and immediately switches to a safer state or remains in the current state if a fault occurs. It provides an integrated, efficient safety solution in systems with increased safety requirements.

Programming is done in Siemens PLCs using the Step 7 languages LAD and FBD and TUV-certified (German Technical Inspectorate) function blocks. The connection to the standard and safety-oriented modules can be optionally made via PROFINET, the open Ethernet standard or via PROFIBUS.
The European guidelines apply today as those that reflect the highest safety standard and are accepted far beyond the boundaries of Europe. In order to ensure the functional safety of a machine or system, the safety-relevant parts of the protective and control systems behave in such a manner in the event of a fault that the system remains in a safe state or is put into a safe state. To this end, special requirements that are defined in standards are placed on the products. Corresponding product certificates can document the compliance with these standards.

Any possible hazards to people and the environment cannot just be averted at the national level. They must always comply with the regulations and rules of the location where the machine or system is operated. Thus the free exchange of goods within the framework of global markets requires internationally agreed codes of practice.

Safety requires protection against a variety of risks. These can be overcome as follows:

- Design in accordance with risk-reducing design principles and risk assessment of the machine
- Technical protection measures, if necessary by the use of safety-related controllers
- Electrical safety

Functional safety involves the part of the safety of a machine or plant that depends on the correct function of its control or protection equipment.

The analysis of risk follows a set procedure.

BGIA is now IFA

The name BGIA for years was associated with the German insurance industry responsible for setting up rules for plant safety or workplace safety. The new name reflects a change in social accident insurance.

The research institutes of the German Social Accident Insurance (DGUV) received new names and abbreviations. As of 1 January 2010, the former BGIA in Sankt Augustin is now be named the "Institute for Occupational Safety and Health of the German Social Accident Insurance", abbreviated as "IFA". Why look to Germany? They have traditionally led the way in quantifying safety in the workplace.

The Internet address of the institute changed accordingly:

As of 1 January 2010, the Institute for Occupational Safety and Health of the DGUV (IFA) is to be found at www.dguv.de/ifa.

Application of the Machinery Directive 2006/42/EC [1] has been mandatory since 29 December 2009. The directive lists products that are described as "logic units to ensure safety functions". These products are stated in Annex IV of the Machinery Directive. This appendix lists products which owing to their function are a source of particularly high hazards in the event of a fault. Accordingly, stricter requirements apply to the conformity assessment method. The affected components and the possible assessment methods are stated below.

1 What products are described as "logic units to ensure safety functions"? Products are affected by this provision when:

 a) they are safety components (see below) and are therefore governed by the Machinery Directive; and
b) they are "logic units to ensure safety functions" in accordance with Annex IV, No. 21 (see below).

Concerning a): safety component in accordance with the Machinery Directive Article 1 of the Machinery Directive states its scope. The products considered here fall under c) safety components. In Sub-point c), Article 2 contains the definition of a safety component:

 c) "safety component" means a component

 • which serves to fulfil a safety function
 • which is independently placed on the market,
 • the failure and/or malfunction of which endangers the safety of persons, and
 • which is not necessary in order for the machinery to function, or for which normal components may be substituted in order for the machinery to function.

If the above definition is applied for example to a safety PLC (Programmable Logic Controller), the following conclusion is reached: a safety PLC
 • serves to fulfil a safety function
 • is placed independently on the market, i.e. it is not supplied solely fitted to a machine
 • endangers the safety of persons in the event of its failure and/or malfunction
 • is not necessary for the machinery to function when used solely for the implementation of safety functions, or can be substituted by a conventional PLC for the purpose of the functioning of the machine, if non safety related functions are also performed.

Under the provisions of the Machinery Directive, a safety PLC is therefore classified as a safety component. As this example shows, the definition applies both to products which are employed solely for safety functions and to products which at the same time fulfil both safety functions and machine functions. An additional aid for determining whether a component is a safety component can be found in Annex V of the Machinery Directive. This contains a non-exhaustive list of safety components.

Concerning b): logic units to ensure safety functions The background to the inclusion of these components in Annex IV is the growing use of functional safety products in machine controls. The Machinery Directive also lists the "logic units to ensure safety functions" in Annex V, but does not define these components. Clarification is provided by the "Guide to application of the Machinery Directive 2006/42/EG" [2]:
If these explanations are applied to products that are typically employed for the implementation of safety functions on machines, the result is the list (not exhaustive) shown in Table 1 in which products are classified according to whether they are logic units. This list, proposed by the IFA as early as 2009, has since been adopted by the European Commission and published as "recommendations for use" for mandatory application by the notified bodies [3]. Notified bodies are authorized to perform EC type examinations.

This table is shown below:
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Logic Operations</th>
<th>Control Safety Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Position switch with positive opening operation acc. to EN 60947-5-1, Annex K</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Proximity switch for safety functions; also termed PDF-X in accordance with</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>EN 60947-5-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mechanical guard locking acc. to EN 14119 (for personnel protection)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Electromagnetic guard locking for safety functions acc. to EN 14119 (for</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>personnel protection)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Trapped-key interlocking system for safety functions; in the form of a</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>complete system only, not of discrete components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Position measurement system for safety functions, e.g. rotary encoder, length</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>measuring device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Protective equipment designed to detect the presence of persons – e.g.</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>electro-sensitive protective equipment, laser scanner, pressure-sensitive mat,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pressure-sensitive bumper, camera system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Protective equipment for indirect detection of the presence of persons, for</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>example by the use of RFID transponders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Protective equipment for the detection and disconnection of possible hazards</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>(not purely warning systems), for example for the detection by an active laser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>barrier of hazardous laser radiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Emergency-stop control device</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>Control device for enabling devices (enabling control)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>Safety switchgear, for example for the monitoring of speed, vibration, torque,</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>temperature, pressure, force, protective doors, emergency stop, two-hand control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>enabling device; note: may be part of a portable control station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Safety PLC</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>Relay/contactor relay with mechanically linked contacts</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>15</td>
<td>Contactor with mirror contacts</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>16</td>
<td>Contactor monitoring module</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>17</td>
<td>Drive control with integral safety functions, e.g. frequency converter, servo</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Time delay for safety functions</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Logic units to ensure safety functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In accordance with Annex IV of the Machinery Directive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>On 29 December 2009, application of the new Machinery Directive, 2006/42/EC, becomes mandatory. One of the associated changes concerns "logic units to ensure safety functions". These are now referred to in Annex IV of the directive. This group is not precisely defined, however. Owing to the reference to these products in Annex IV of the Machinery Directive, stricter requirements apply to the conformity assessment procedure for application of the CE mark.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For the purpose of defining logic units to ensure safety functions, the IFA has made an article available for download in which it classifies the components frequently employed in machine controls. The products concerned include safety PLCs (programmable logic controllers), power drive systems with integrated safety functions, safety switchgear, and any components for which the manufacturer states a Category, Performance Level or Safety Integrity Level. The classification of a component as a "logic unit to ensure safety functions" constitutes an estimation made by the IFA in liaison with other German test bodies.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A risk is defined below:

![Risk diagram]

A process to reduce risk is defined as:

![Risk process]

Independent safety devices may be used in the design of a safety system. Two such devices are given below. The first is a safety relay. The second is a two-hand safety circuit. Both are stand-alone and are not to be incorporated in the PLC system other than as an add-on to an existing PLC system. They have been supplanted by the safety PLC with the function of these devices incorporated into the PLC itself after 2003 and the changes in standards permitting safety functions to be allowed inside the PLC.

Since we have heard much from Siemens and Allen-Bradley in this text, we allow another voice – Schneider – the French automation giant who is the owner of multiple PLCs including the original PLC – Modicon. The following, however, are not PLCs but rather discrete devices that pre-dated PLCs for safety functions:
Operating principle

Safety modules XPSAC are used for monitoring Emergency stop circuits conforming to standards EN/ISO 13850 and EN 60204-1 and also meet the safety requirements for the electrical monitoring of switches in protection devices conforming to standard EN 1088/ISO 14119. They provide protection for both the machine operator and the machine by immediately stopping the hazardous movement on receipt of a stop instruction from the operator, or on detection of an anomaly in the safety circuit itself. To aid diagnostics, the modules have LEDs which provide information on the monitoring circuit status.

The XPSAC module has 3 safety outputs and a solid-state output for signaling to the PLC.
Characteristics

<table>
<thead>
<tr>
<th>Module type</th>
<th>Module type</th>
<th>XPSAC</th>
<th>XPSACP</th>
<th>XPSACEEEIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td>Type</td>
<td>Captive screw clamp terminals</td>
<td>Captive screw clamp terminals, removable terminal block</td>
<td></td>
</tr>
<tr>
<td>1-wire connection</td>
<td>Without cable end</td>
<td>Solid or flexible cable: 26-16 AWG (0.14...2.5 mm²)</td>
<td>Solid or flexible cable: 24-18 AWG (0.2...2.5 mm²)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>With cable end</td>
<td>Without bezel, flexible cable: 24-16 AWG (0.25...2.5 mm²)</td>
<td>With bezel, flexible cable: 24-16 AWG (0.25...1.5 mm²)</td>
<td></td>
</tr>
<tr>
<td>2-wire connection</td>
<td>Without cable end</td>
<td>Solid or flexible cable: 28-16 AWG (0.14...0.75 mm²)</td>
<td>Solid cable: 24-18 AWG (0.2...1 mm²), flexible cable: 24-18 AWG (0.2...1.5 mm²)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>With cable end</td>
<td>Without bezel, flexible cable: 24-18 AWG (0.25...1 mm²)</td>
<td>With bezel, flexible cable: 20-16 AWG (0.5...1.5 mm²)</td>
<td></td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Description</th>
<th>Type of terminal block connection</th>
<th>Number of instantaneous opening safety circuits</th>
<th>Additional outputs</th>
<th>Supply</th>
<th>Reference</th>
<th>Weight (oz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety modules for emergency stop and switch monitoring</td>
<td>Integrated in module</td>
<td>3</td>
<td>1 solid-state</td>
<td>~ and ≈ 24 V</td>
<td>XPSAC5121</td>
<td>5.644 (0.160)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XPSAC1321</td>
<td>7.408 (0.210)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XPSAC3421</td>
<td>7.408 (0.210)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XPSAC3721</td>
<td>7.408 (0.210)</td>
</tr>
<tr>
<td>Removable from module</td>
<td>3</td>
<td>1 solid-state</td>
<td>~ and ≈ 24 V</td>
<td>XPSAC5121P</td>
<td>5.644 (0.160)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XPSAC1321P</td>
<td>7.408 (0.210)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XPSAC3421P</td>
<td>7.408 (0.210)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XPSAC3721P</td>
<td>7.408 (0.210)</td>
</tr>
</tbody>
</table>
SAFETY RELAY FOR TWO HAND CONTROL STATIONS, OUTPUT: 2; AUX: 2 SOLID STATE; 24VDC

Operating principle

Two-hand control stations are designed to provide protection against hand injury. They require machine operators to keep their hands clear of the hazardous movement zone. The use of two-hand control is an individual protective measure, which can safely protect only one operator. Separate two-hand control stations must be provided for each operator in a multiple-worker environment. Safety modules XPSBA, BC and BF for two-hand control stations comply with the requirements of European standard EN 574/ISO 13851 for two-hand control systems.

The control stations must be designed and installed such that they cannot be activated involuntarily or easily rendered inoperative. Depending on the application, the requirements of type C standards specific to the machinery involved must be met (additional personal protection methods may have to be considered).

To initiate a hazardous movement, both operators (two-hand control pushbuttons) must be activated within an interval y 0.5 s (synchronous activation). If one of the two pushbuttons is released during a hazardous operation, the control sequence is cancelled. Resumption of the hazardous operation is possible only if both pushbuttons are returned to their initial position and reactivated within the required time interval.

The control sequence does not occur if:

• Both two-hand control push buttons are pressed during a time period greater than 0.5 seconds,
• A short-circuit is present in a push button contact,
• The feedback loop is not closed at start-up.

The safety distance between the control units and the hazardous zone must be sufficient to ensure that when only one operator is released, the hazardous zone cannot be reached before the hazardous movement has been completed or stopped.

XPSBA

This module is designed for use on lighter duty applications where a two-hand control function is desired, but where the safety category is B or 1 (per EN 954-1) and the two-hand control requirements meet Type III A (per EN 574).
This module is not to be used for applications, such as presses, which require a Type III C module or where the application is not a category B or 1.

For press applications, for applications in category 2, 3, or 4, or if application calls for a Type III C module, use XPSBC or XPSBF module.

XPSBC and XPSBF

These modules can be used on applications, such as presses, which require a Type III C module. The XPSBC and XPSBF can be used for a two-hand control application, including presses and similar equipment.

Standard EN 574/ISO 13851 defines the selection of two-hand controls according to the control system category. The following table details the three types of two-hand control conforming to EN 574/ISO 13851. For each type, it lists the operating characteristics and minimum requirements.

<table>
<thead>
<tr>
<th>Requirements of standard EN 574/ISO 13851</th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of both hands (simultaneous action)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link between input and output signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output signal inhibited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevention of accidental operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamper-proof</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output signal reinitialized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchronous action (specified time limit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of proven components (Category 1 conforming to EN 954-1/ISO 13849-1)</td>
<td>Green</td>
<td>XPSBA++</td>
<td></td>
</tr>
<tr>
<td>Redundancy with partial error detection (Category 3 conforming to EN 954-1/ISO 13849-1)</td>
<td>Green</td>
<td>XPSBC XPSBF</td>
<td></td>
</tr>
<tr>
<td>Redundancy + Self-monitoring (Category 4 conforming to EN 954-1/ISO 13849-1)</td>
<td>XPSBC XPSBF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Meets the requirements of standard EN 574/ISO 13851
- Conforming to standard EN 954-1/ISO 13849-1
Legal requirements and standards regarding safety at work in North America

An essential difference between the legislation associated with safety at work between North America and Europe is the fact that in the US there is no standard legislation regarding machinery safety that addresses the responsibility of the manufacturer/supplier. There is a general requirement that the employer must provide a safe place of work.

US – general

The Occupational Safety and Health Act (OSHA) from 1970 is responsible in regulating the requirement for employers to ensure safe working conditions. The core requirements of OSHA are listed in Section 5 “Duties”:

(a) Each employer
 (1) shall furnish to each of his employees employment and a place of employment which are free from recognized hazards that are causing or are likely to cause death or serious physical harm to his employees;
 (2) shall comply with occupational safety and health standards promulgated under this Act.

The requirements from the OSH Act are administered and managed by the Occupational Safety and Health Administration. OSHA deploys regional inspectors who check whether workplaces fulfill the applicable regulations. The regulations, relevant for safety at work of the OSHA, are defined and described in OSHA 29 CFR 1910.xxx.

The following is stated at the beginning of the regulations for the Safety and Health Program:

(b)(1) What are the employer’s basic obligations under the rule? Each employer must set up a safety and health program to manage workplace safety and health to reduce injuries, illnesses and fatalities by systematically achieving compliance with OSHA standards and the General Duty Clause.

And later

(e) Hazard prevention and control

(e)(1) What is the employer’s basic obligation? The employer’s basic obligation is to systematically comply with the hazard prevention and control requirements of the General Duty Clause and OSHA standards.

(h)(6)(xvii)

Controls with internally stored programs (e.g., mechanical, electro-mechanical, or electronic) shall meet the requirements of paragraph (b)(13) of this section, and shall default to a predetermined safe condition in the event of any single failure within the system. Programmable controllers which meet the requirements for controls with internally stored programs stated above shall be permitted only if all logic elements affecting the safety system and point of operation safety are internally stored and protected in such a manner that they cannot be altered or manipulated by the user to an unsafe condition.

The OSHA regulations define minimum requirements to guarantee safe places of employment. However, they should not prevent employers from applying innovative methods and techniques, e.g. “state of the art protective systems” in order to maximize the safety of employees.
In conjunction with specific applications, OSHA specifies that all electrical equipment used to protect employees, must be certified for the intended application by a nationally recognized testing laboratory (NRTL) authorized by OSHA. OSHA requires that all electrical products used by employees must be treated and approved for their intended use by an OSHA Approved Nationally Recognized Testing Laboratory.

NFPA 79

This Standard applies to the electrical equipment of industrial machines with rated voltages less than 600 V (a group of machines that operate together in a coordinated fashion is considered as a machine).

The comparison of European SIL and US Category (Cat) is shown below. Category 3 and 4 require safety equipment installed to protect employees.
While not familiar with Allen-Bradley’s safety PLC, the following article shows some of the concerns when selecting the best safety PLC for the application. Usually, if one is familiar with Siemens, the Siemens Safety PLC will be selected. Likewise, with Allen-Bradley, the Allen-Bradley Safety PLC would be the choice. These tendencies may be strong but should be explored since the safety plc gives one a good chance to once again ask which PLC is the best overall product for the application.
Siemens vs. Rockwell...from a Safety Perspective

Posted by Joan Jacinto on Wednesday, February 25, 2015 · 4 Comments

More than hardware or software, it’s their approach to safety and redundancy that differentiates vendors’ from protocols, controllers, I/O and networks.

Choosing an industrial equipment supplier is a complex decision, one that can have implications for years. It’s important to have an understanding of the many tradeoffs that come with this selection process.

The criterion must cover the myriad aspects of a total solution: global support can be as important as hardware and software concerns. Each of these three categories has layers of considerations. For many companies, Siemens and Rockwell are the two primary choices in this selection process. Based on U.S. customer feedback, Siemens is ahead on the hardware side and Rockwell Automation has lead on the software side.

Many properties must be examined when product lines are being compared. In recent years, regulators have made safety an important element in the selection process. In 2008, Rockwell ramped up its focus on safety with Common Industrial Protocol (CIP) protocol compatibility.

Currently, software V20 version is shipping for Rockwell’s GuardLogix line. It communicates with GLX controllers and other Ethernet/IP devices via unicast, transmitting safety I/O using DeviceNet. Rockwell’s safety – line includes modular safety relays. The next step up is the Smart Guard 600, which uses only DeviceNet. Rockwell does not have local safe I/O with GLX or cGLX, so all safety communications must be distributed. Drives and safety PLCs remain separate entities, Safety PLCs with CIP can support up to 64 CIP connections with CIP safety support, using produce/consume to talk to safety I/O. Transferring data from one processor to the next requires creating a produce/consume tag every time there is a connection.

The Siemens SIMATIC line has offered PROFIsafe since 1999, enough development time to result in safety solutions such as PC-based safety, wireless safety and ET200 iSP fail-safe, to name a few. The wireless capabilities have become increasingly important in recent years as tablets and smart phones make their way into facilities that also use wireless to put sensors and other gear in hard-to-reach locations.

The backbone of safety-oriented SIMATIC controllers are standard controllers and standard networks with safety built into the firmware. Safety signals and control communications both travel over the same networks, eliminating the need for dedicated networks. The operating system and hardware
components have been extended by various protection mechanisms allowing the user to mix and match standard and safety functionalities in one system.

I/O is another important factor for most industrial environments. Rockwell’s Guard I/O detects failures at the I/O and field device level, while helping enhance operator protection. Compact Block guard I/O comes in three flavors: a relay out, input/output card and an input-only card.

Rockwell’s CGLX I/O modules have no onboard communications. Users must buy Ethernet-IP scanners separately. They are limited to 64 connections. Each safety module takes one connection, and some safety output modules take up two connections.

Siemens provides flexibility with the ET 200 distributed I/O line. A modular concept lets customers build configurations that meet their current needs while simplifying expansion as needs change. PROFINET connections are built in and also a range of Profibus and Profinet cards can be added quickly for further expansion as required, minimizing downtime.

Fail Safe Operations

The global focus on safety also brings redundancy into more system designs. Many functional safety requirements call for eliminating single-point failures. Duplicating key elements is an easy way to avoid problems when a component fails.

SIMATIC controllers also make it simple to add redundancy to ensure unexpected downtime is minimized. Siemens also provides redundancy support when new versions of its software ship. That’s a contrast to Rockwell, which typically does not add redundant capabilities with initial software revs, instead waiting a few months before adding that feature.

Testing is another critical aspect for safe operations. Siemens lets plant operators test standard and safety software with the PLCSIM simulator tool. It can handle two runtime groups, so one cycle time can run at different scan time than the other cycle time. For example, an application with 100 door switches can run at 30 ms scan time, while a second with two sets of light curtains can run at 10ms scan time.

Rockwell has only instance data for add on instructions, so using AOI makes the safety program cumbersome. There’s no dedicated Rockwell simulation tool. Users must buy the Emulation RSLogix Emulate 5000 module, which requires a chassis monitor, test stand and Linx Lite for communication. Ease of configuration is another difference between the two companies/architectures. Siemens has safety signatures for all safety FBs. They are safety certified for more precise safety traceability. Newer modules have no DIP switch settings, which help simplify module replacement, increasing uptime.

For Rockwell when a project is created, a safety signature is created for the initial download. If another project is created or a module is changed, the processor’s safety signature has to be changed to add that module. Users can’t just swap the module out to get running again. With Rockwell systems, standard tags have to be mapped to safety tags to permit use with safety equipment.

Many other factors will come into play when companies pick their equipment supplier. The difficulty of configuring and revising systems are important considerations, as is the ability to simulate elements before they’re implemented. It’s important for companies to have a good understanding of the available offerings and support services before making decisions that will determine much of the corporation’s strategic focus for years.
Sounds like Siemens influenced this article. Use both and Rockwell has better hardware, software and technical support. Ethics are completely different also.

Dear Sir or Madam:

I enjoyed your article on safety. As I recall, it was the Siemens PLC that was the target of the Stuxnet attack. PLCs were doing things that no one could see on their PC, damaging equipment. To think, Siemens PLCs briefly changed the balance of power in the Middle East. Quite an accomplishment. Or maybe it wasn’t the PLCs. Maybe it was the poorly architected software.

Outta Control, LLC
Albuquerque, NM
Alan Peter

I’m using my first Rockwell Safety PLC at the moment and have used Siemens a few times before. What I find about Rockwell is how inflexible it all seems. I can’t seem to connect the output of a Safety AOI to a block on the standard but have to map the tag. I have 3 Safety PLC in my project with 250 CAT3 and CAT4 (DOL, SoftStart and VFD) motors that are requiring AOIs. I need hundreds of tags mapped. Fortunately I can do this in the export file and reimport but it is a major pain. Rockwell always seem to be playing catch-up.

An aside about the comments above:

What is Stuxnet?

From Wikipedia, the following:

Stuxnet is a malicious computer worm, first uncovered in 2010 by Kaspersky Lab. Thought to have been in development since at least 2005, Stuxnet targets SCADA systems and was responsible for causing substantial damage to Iran's nuclear program. Although neither country has openly admitted responsibility, the worm is believed to be a jointly built American/Israeli cyberweapon.[6][7]

Stuxnet specifically targets programmable logic controllers (PLCs), which allow the automation of electromechanical processes such as those used to control machinery on factory assembly lines, amusement rides, or centrifuges for separating nuclear material. Exploiting four zero-day flaws, Stuxnet functions by targeting machines using the Microsoft Windows operating system and networks, then seeking out Siemens Step7 software. Stuxnet reportedly compromised Iranian PLCs, collecting information on industrial systems and causing the fast-spinning centrifuges to tear themselves apart.[6] Stuxnet's design and architecture are not domain-specific and it could be tailored as a platform for attacking modern supervisory control and data acquisition (SCADA) and PLC systems (e.g., in factory assembly lines or power plants), the majority of which reside in Europe, Japan and the US.[8] Stuxnet reportedly ruined almost one fifth of Iran's nuclear centrifuges.[9] Targeting industrial control systems, the worm infected over 200,000 computers and caused 1,000 machines to physically degrade.[10]

Stuxnet has three modules: a worm that executes all routines related to the main payload of the attack; a link file that automatically executes the propagated copies of the worm; and a rootkit component responsible for hiding all malicious files and processes, preventing detection of the presence of Stuxnet.[6] It is typically introduced to the target environment via an infected USB flash drive. The worm then propagates across the network, scanning for Siemens Step7 software on computers controlling a PLC. In the absence of either criterion, Stuxnet becomes dormant inside the computer. If both the conditions are fulfilled, Stuxnet introduces the infected rootkit onto the PLC and Step7 software, modifying the codes and giving unexpected commands to the PLC while returning a loop of normal operations system values feedback to the users.[9][10]
In 2015, Kaspersky Labs noted that the Equation Group had used two of the same zero-day attacks, prior to their use in Stuxnet, and commented that: “the similar type of usage of both exploits together in different computer worms, at around the same time, indicates that the Equation Group and the Stuxnet developers are either the same or working closely together”.\[1\]

So, buyer – beware!

The following is a lab furnished by Siemens to demonstrate the functionality of their safety equipment. Without many comments, the following is re-produced to give an example of safety programming and configuring:

Demo Unit Layout

![Demo Unit Layout](image)

- **RTF850 Comfort Panel**
- **Acknowledgement Button**
- **Local ESTOP**
- **Zone 2 LED**
- **Zone 1 LED**
- **57-1200 F Safety PLC**
- **Safety Input Module**

Global ESTOP

RFID Safety Door Switch

Door Indicator Light

Safety Relay Output Module #1

Safety Relay Output Module #2

1. **1. Installed Software on PC used to create labs.**
2. **2. Note that V13 SP1 Safety was also installed.**
1. Select “Create a new project”.
2. Project name “Safety with 1200F”; Save the project to the Student Folder on the Desktop/“Student/Trainee Project”
3. Select “Create”.

1. Select “Configure a device” to add a device.
1. Select "Add a new device".
2. Select "Controllers".
3. In this lab we are using a S7-1215FC DC/DC/DRy.
 Open the folders and select the "S7ST 215-1HF40-0X00".
4. Make sure selected Firmware Version is V4.1.
5. Verify that Open device view is checked.
6. Once you have selected the CPU, select "Add".

1. Observe Runtime Group parameters.
2. Press OK.

Note: The Runtime Group defines how the Safety System operates. The Runtime Group is created automatically when using a FailSafe PLC, but can be modified when needed.
1. An Instance Data Block is required for the "Main Safety" routine. Leave as default and press OK.

Note: The Runtime Group defines how the Safety System operates. The Runtime Group is created automatically when using a Failsafe PLC, but can be modified when needed.

1. When the Main Safety Routine was added, the default programming language is FBD (Function Block Diagram). Right click on Main_Safety_RTG.

2. Select Switch Programming Language & LAD (Ladder)
1. We now need to populate the IO rack to match our demo. Open the Device Configuration, Device View for your newly added PLC rack as shown.

2. From the Catalog populate your IO rack to match your demo. The next page will show the completed rack. For this lab, we are using the default settings of the cards. To view the settings you can open the properties of each card.

1. Your rack should match your demo with 3 safety I/O Modules.
 1. 8/16 F-DI – 6ES7226-6BA32-0XB0
 2. F-DQ 2xRelay – 6ES7226-6RA32-0XB0
 3. F-DQ 2xRelay – 6ES7226-6RA32-0XB0
Ch. 20 Safety Programming in the PLC

1. Open Libraries
2. Open Global Libraries
3. Right click in the White Space and select "Retrieve Library" from the list.
4. Select the file Safety Workshop 1200F.zal13 file from the Student folder on the Desktop and store it in the /Student/Tainee folder on the Desktop.

1. Open the Master Copies folder of the Safety Workshop 1200F Library that was just retrieved.
2. Drag and drop the Failsafe IO Tags object into the PLC tags folder of the project tree.
Enabling the System Clock Memory
1. Select the CPU in the Device View
2. Select the General Properties in the Inspector Window
3. Highlight System and Clock Memory
4. Enable Clock memory bits
5. Ensure Address of Clock Memory type = 0

Select the F-DI module in the Device View.
2. Open the IO tags tab in the Device Properties. Note the tag names assigned to the first three fail-safe inputs on the module. These correlate with the descriptions of the devices on the Demo Layout sheet. All three of these devices are dual channel inputs. The module must be configured appropriately.
1. Open the F-Di general tab and look at the channel safety parameters. Note that all inputs are set to 1oo1 evaluation (single channel) unlike our other I/O’s that are default 1oo2 (dual channel). Also note that all inputs are set to external sensor supply. These parameters will need to be changed for the devices on our demo unit.

1. Set the Sensor evaluation for Channel 0, 8 to 1oo2 evaluation. This matches the actual wiring of the Global Estop.
2. Since the Global Estop is an electro-mechanical device, it is advised to raise the channel Discrepancy time above the default value of 10ms. For this workshop, we will be using 500ms.
3. Set the Sensor supply of Channel 0 to internal. The module will be supplying power through the Estop contacts.
1. Set the Sensor evaluation for Channel 1-9 to '1 out 2' evaluation. This matches the actual wiring of the Local Estop.

2. Since the Local Estop is an electro-mechanical device, it is advised to raise the channel Discrepancy time above the default value of 10ms. For this workshop, we will be using 500ms.

3. Set the Sensor supply of Channel 0 to Internal. The module will be supplying power through the Estop contacts.

1. Set the Sensor evaluation for Channel 2,10 to '1 out 2' evaluation. This matches the actual wiring of the RFID Door Switch.

2. Since the RFID Door Switch is solid state device, the channel Discrepancy time can be set to a lower value. For this workshop, we will be using 50ms.

3. Keep the Sensor supply of Channel 0 to External. The RFID door switch has internal safety electronics such that a SIL 3 safety level can be achieved without an internal module supply setting.
1. Open the first F-DQ Relay output properties and note the settings.

1. Open the first F-DQ Relay output and note the demo unit outputs that are controlled by this module.
Ch 20 Safety Programming in the PLC

1. Open the second F-DQ Relay output and note the demo unit output that is controlled by this module.
2. Compile the Hardware configuration by clicking on the Compile button in the Toolbar.
3. Save the project.

1. Open the Main Safety Runtime Group Function Block (Main_Safety_RGT1) by double clicking on the block name in the Program blocks folder of the Project tree.
2. From the Basic Instructions -> Safety functions folder of the instruction list, drag and drop the ACK_GL instruction onto Network 1.
3. Accept the default name for the block instance by clicking OK in the dialog box that pops up.
Global Acknowledge Instruction -> background information

The Global Acknowledge Instruction allows the user program to reintegrate failsafe modules that have been passivated (due to a channel discrepancy i.e. Estop contacts not at same value) or module error back into the system as operational. It is recommended that every safety program use this instruction to avoid having to restart the PLC in case of a safety error.

FailSafe blocks -> background information

Blocks (FB, FC, DB) created in the user program can be defined as a standard user block or a failsafe block. FailSafe Functions and Function Blocks can only be called from a FailSafe Runtime Group. FailSafe Blocks can be evaluated from the standard user program but should only be written to from a failsafe program.
1. Add the tag names to the Safety Data Block as shown below. We will be using these tags to evaluate the safety functions later in the program.

2. Compile the Data Block by clicking on the Compile button in the Toolbar.

1. Open the Main Safety RunTime Group Function Block (Main_Safety_RGT1). It should still be visible in the open tasks bar on the bottom of the screen.

2. From the Basic instructions -> Safety functions folder of the instruction list, drag and drop the ESTOP1 instruction onto Network 2.

3. In the Call options dialog, name the instance for this instruction "Global_Estop".

4. Click OK.
1. Assign the Global Estop on the demo rack to the input of the ESTOP1 instruction. Assign the Acknowledge Pushbutton to the Ack input.

2. Note that the default setting of the instruction inputs a “true” value to the Ack_NEC input. This requires that you turn on the “ACK” input in order to reset the output of the instruction after an Estop condition.

3. Assign the Global Estop tags we just created from the Safety Data Block to the Q and Ack_REQ outputs of the instruction. The Ack_REQ output will go true when and Estop has been pressed and reset.

Failsafe tags -> background information
Tags that are defined as Failsafe tags (I/O tags or F-DB tags) will appear in the program highlighted in yellow. Tags defined as standard tags will appear normally. This is true for both standard program blocks and failsafe program blocks.

1. Drag and drop the ESTOP1 instruction onto Network 3.
2. In the Call options dialog, name the instance for this instruction “Local_Estop”.
3. Click OK.
1. Assign the Local Estop on the demo rack to the input of the ESTOP1 instruction. Assign the Acknowledge Pushbutton to the ACK input.

2. Note that the default setting of the instruction inputs a “true” value to the ACK_REQ input. This requires that you turn on the “ACK” input in order to reset the output of the instruction after an Estop condition.

3. Assign the Local Estop tags we just created from the Safety Data Block to the Q and ACK_REQ outputs of the instruction. The ACK_REQ output will go true when and Estop has been pressed and reset.
1. Assign the RFID door switch on the demo rack to the input of the ESTOP 1 instruction.
2. Note that the default setting of the instruction inputs a “true” value to the ACK_NEC input. This requires that you turn on the “ACK” input in order to reset the output of the instruction after an incident condition. We want to auto-reset the instruction when the door is closed again. Type “false” in the ACK_NEC input.
3. Assign the Safety Door Opened tag we just created from the Safety Data Block to the Q output of the instruction.

1. Add Network 5 as shown. The Global Estop and the Safety door will both enable the Door LED relay.
2. Add Network 6 as shown. The Global Estop and the Local Estop will both enable the Zone 1 LED relay.
3. Add Network 7 as shown. The Global Estop only will enable the Zone 2 LED relay.
4. Save the project.
1. Open the Main cyclic routine (OB1) by double clicking on “Main” in the Program blocks folder.

2. Add Network 1 as shown. When the Global Estop is pressed, the LED ring light around the Estop will illuminate. Note failsafe tags in yellow.

3. Add Network 2 as shown. When the Local Estop is pressed, the LED ring light around the Estop will illuminate.

1. Add Network 3 as shown. When all safety devices are OK, the top LED cluster on the demo unit will illuminate Green.

2. Add Network 4 as shown. When any of the safety devices are actuated, the top LED cluster on the demo unit will illuminate Red.
1. Open the F-IO data block for the Safety Input module on the demo unit by double clicking on the DB name shown in the Program blocks -> System blocks -> STEP7 Safety -> F-IO data blocks folder. View the different tags and comments.

F-IO Data Blocks -> background information

Every fail-safe I/O module that is configured into a SIMATIC Safety integrated system will have an F-IO data block associated with it. The F-GPU reads and writes data to this DB during system operation that can be utilized in the user program (both standard and fail-safe) to get information about the module. For example, the Output variables PASS_OUT and QBAD relay to the user program that the module is in a passivated state, usually because of a module error or channel discrepancy. The ACK_REQ bit will go high when the module is passivated but can be re-integrated back into the system. If this is the case, the user program can be configured to either globally re-integrate all modules that are ready (see ACK_GL instruction in Network 1 of the Main Safety FB) or individually re-integrate modules by turning on the ACK_REI Input parameter of the Data Block. Other diagnostic info can be obtained by evaluating the DIAG tag. See I/O manual for details.

1. Open the Main block up again.
2. Add Network 5 as shown. When an Estop has been pressed and released again, the blue LED will flash indicating it is OK to Acknowledge. When a safety module or channel error has occurred and the condition has been remedied, the blue LED will turn on solid indicating that it is OK to re-integrate the module. Pressing the Blue PB will Acknowledge either condition.
1. Click on the PLC in the Project tree.
2. Compile the station by clicking the Compile button in the toolbar.
3. Open the Safety Administration window by double clicking on Safety Administration in the Project tree.
4. Note that when a compilation is done on a Safety program or Hardware configuration, a signature is created, which corresponds to the overall FailSafe signature of the F-CPU. This signature is used for documentation and safety system acceptance testing. After final acceptance testing, any change in the safety signature requires a new acceptance test to be run to validate the changes made.

1. Open the Runtime Group System Information Data Block by double clicking on RTG SysInfo block in the Program blocks -> System blocks -> STEP 7 Safety folder.

Runtime Group System Information DB -> background information

Each FailSafe Runtime Group in the F-CPU has a data block dedicated to it to provide user information in the project for status. The DB contains status info on the safety mode, cycle times and program signatures.
1. Click on the PLC_1 in the Project tree.
2. Click the Download button in the toolbar.
3. In the Extended download to device window that pops up, select the appropriate Ethernet adapter in the PG/PC interface pulldown.
4. Click Start search.
5. Highlight the PLC in the list. Check the Flash LED box. Note that the RUN/STOP, ERROR and MAINT lights will flash.
6. Click Load.

Note: The PLC was Factory default (i.e. No IP Address). When downloading, TIA Portal automatically browses for all S7-1200F’s and will assign the IP address during project download.

1. Verify that the Load preview window shows a normal download. Click Load.
Test Demo unit functionality:

- Upon power up/Download the blue LED on the ACK button may flash. Press the ACK button to ACK the safety system. The LED light rings should illuminate and the top LEDs should turn green.
- Pressing of the Global E-Stop should turn off Zone 1, Zone 2, and Door LED and turn the top LEDs red. Upon releasing of the E-Stop the blue ACK light should flash. Press ACK button to reset safety system.
- Pressing of the Local E-Stop should turn off only Zone 1 LED and turn the top LEDs red. Upon Releasing of the E-Stop the blue ACL light should flash. Press ACK button to reset safety system.
- Opening of the safety door should turn off only the door LED and turn the top LEDs red. Upon closer of the door the door LED should come on need no ACK reset.

1. Test your safety functions to make sure they perform correctly.
Task #2: S7-1200F Visualization

Goal:
Demonstrate the ease of setting up a Simatic Comfort Panel to display Failsafe Information

Main take away items:
- Learn how to add a 4” Comfort Panel to the project
- Locate and add relevant Safety program status in PLC and visualize on an HMI screen.

1. Double click “Add new device”
2. Click HMI, to add an HMI
3. Select SIMATIC Comfort Panel, 4”, KTP400 Comfort
4. Be sure to uncheck the wizard
5. Select OK
1. Rename “Start” Screen as “Home”
 Note: The Green Triangle indicates the Start-up screen.
2. Add a new screen and name it “Safety Information”

1. Select the “Home” screen for editing
2. Drag the “Splash Graphic” from the Safety Workshop (1200F Library and place on the screen.
 Resize the object to leave some room for some buttons below it.
3. Drag the “Safety Information” screen from the project tree and place below the Splash Graphic.
 Note: By dragging the screen name, a button is added and the “Activate Screen” event is automatically added.
1. Select the Safety Information Screen
2. Drag (4) Text Fields onto the screen and configure as shown. Change the font size to something appropriate.
3. Uncheck the “Style/Design settings” for each Text Field. We are not using this feature today.

Note: Style and Design templates allow a programmer to setup default setting for all objects in the Toolbox. They can also be changed on the whole project.

1. Open PLC Program Blocks and navigate to RTG1SysInfo as shown.
2. Open Details View
3. Drag F_PROG_SIG & F_PROG_DAT from Details View and place on the screen. Resize objects.
4. Highlight F_PROG_SIG I/O_Field_1 and change the Display Format and Format pattern as shown.

Note: By dragging and dropping variables from a PLC block, Wincc automatically adds an I/O Field and populates the Process Tag info.
Ch 20 Safety Programming in the PLC

1. Drag a circle from the Basic Objects Toolbox
2. Resize and place on the screen
3. Click Animations of the Circle
4. Under Display, Double Click "Add new animation"
5. Click Appearance
6. Click OK

1. Highlight the Circle
2. Ensure Properties tab is displaying Animations
3. Drag Mode variable from Details view
4. Drop on Appearance Tag name
5. Add (2) ranges and change background colors as shown
1. Drag Home screen from Project Tree to Safety Information screen
2. Highlight Home Button
3. Change General Mode from Text to Graphic
4. Change Graphic to Home
5. Click the Green Check box to confirm
6. Resize the button
7. Save the Project
1. Highlight HMI_1 in the project tree
2. Press Download to device button in the toolbar
3. Press Start Search to browse for HMI
4. Select hmi_1 from the list
5. Press load

1. Press Load
Task #3: Additional HMI Visualization (Optional)

Goal:
Add machine diagnostics to the HMI to visualize the status of the Estops and Guard Door.

Main take away items:
- Importing functions from the library to diagnose ESTOP1 Block
- Creating Text lists to be used multiple times to visualize the status of ESTOP1
1. Using the Safety Workshop 1200F Library, drag “EStop1_Diag” Function to the Program Blocks of the PLC.

1. Double-click EStop1_Diag Function to observe the inner workings of the block.
2. Notice the Diagnostic byte is passed into the block, then Slice Access is used to read individual bits.

Note: You can access areas of the 1-bit, 8-bit, 16-bit, or 32-bit width by using X, B, W or D after the variable.
1. Double click Add new block to insert a New Data Block.
2. Select Data Block.
3. Rename block as shown.
4. Important - Uncheck Create F-block, if it is checked.
5. Press OK.

Note: Failsafe Data Blocks can be read from the Standard Program, but can only be written to from the Safety Program. In this case, we are only using this data for standard program diagnostics.

1. Add the entries as shown, be sure to change the default Data type from Bool to Int.
1. Open the Main routine.
2. Drag EStop1_Diag onto Network 6 & 7, as shown.
3. Using Intellisense, type the Diag variables. (eg. Start typing g, then click on Global_Estop, then click on DIAG.
4. Highlight the Diagnostics Data Block in the project tree, and using the Details View, drag the appropriate Tags to each block as shown.
5. Save the project.

Note: There are several ways to enter Tag Information. Two methods are shown here.
1. Ensure Start all is checked
2. Press Finish
Ch 20 Safety Programming in the PLC
1. Open the Machine Diagnostics Screen. (You can use either the tabs across the bottom or reopen from the Project Tree.)
2. Drag a Symbolic I/O Field onto the screen and resize as shown.
3. With the PLC Diagnostics Data Block selected, drag the GlobalEstopStatus Tag to the Process Tag.
4. Change the Mode to Output, this Field will only be used for display.
5. Assign the EStop_Status Text list.

1. Copy and Paste the Symbolic I/O Field used for Global Estop for use with Local Estop, as shown.
2. Drag the LocalEstopStatus Tag into the Process Tag.
1. Drag a Symbolic I/O Field onto the screen as shown.
2. After highlighting the Safety PLC Data Block, drag the Door_Closed tag to the Process Tag.
3. Change the Mode to Two states.
4. Change the Text On & Off as shown.

Note: Sometimes only two states are needed for display, instead of using a Text List, the Two State mode can be used.

1. Open the Home screen.
2. Drag the Machine Diagnostics screen onto the Home screen to create the page change button.
The examples of this lab give an insight into the implementation of a Safety PLC and its components. Next will be a review of the process of determining whether the effort is needed—a risk assessment. The article found is informative and general enough to give a good overview. Using the combination of the BGIA—German rule set along with common sense and those rules developed by a particular industry will give a good foundation for implementing a safe PLC and safe process. Realize that this effort is on-going and will continue to be a source of concern even after the start-up of a process.
Observations by Engineers Responsible for Implementing Safety PLCs

Machine Safety: What is a Risk Assessment and Why is It Important?

What is a Risk Assessment and Why is It Important?
A risk assessment is used in machine safety to identify, document, eliminate or reduce hazards in a particular machine or process. While it is always best to refer to the standards when planning a risk assessment, here are a few answers to some commonly asked questions. Note that this article is for educational purposes only and is accurate as of the time of publication. Banner recommends consulting a safety professional about your specific application before implementing safety measures.

Common Questions Answered

Q: What is a risk assessment?

Ultimately a risk assessment is a process which helps identify:
1. Potential hazards
2. Potential severity of hazards
3. Frequency of exposure to hazards
4. Strategies to implement to minimize hazards and avoid harm

This process is not a quick cure to all safety issues, nor is it a guarantee of a 100% injury-free workplace. It is more of a risk diagnosis and safety prescription used to document risk in a workplace, help determine an acceptable level of risk, and determine a course of action to mitigate risks.
Q: What steps must be taken in a risk assessment?

The fundamental steps in the risk assessment process include:

1. Identifying tasks and the associated hazards in the workplace
2. Assessing the probability and severity of harm
3. Reducing the risk of harm through the elimination of the hazard or through the use of safeguarding methods
4. Documenting the process and the results.

Through the risk assessment process and the documentation it produces, a machine manufacturer and an employer can prove due diligence in providing a safe workplace and a quality product.

Q: What standards should be followed?

There are many standards! Among them:
- ANSI/RIA R15.06 -1999, Safety Requirements for Industrial Robots and Robot Systems
- ANSI B11 TR3, Risk Assessment and Risk Reduction
- ISO 14121(EN 1050), Principles of Risk Assessment
- OSHA 3071 Job Hazard Analysis
- IEC 812 FMEA

Also refer to EN 1050 and ISO 13849-1 which outline the process of risk assessment and specific categories of safety equipment. Standards help define a cohesive strategy or approach to the risk assessment process, which, if followed, can lead to better decisions and more efficient utilization of resources.

Q: Does OSHA endorse any certain standard?

OSHA (Occupational Safety and Health Administration) does not provide a prescription, but it does provide the objective. It is a general expectation that industry-recognized abatement methods will be applied whenever and wherever feasible.

Q: Who is responsible for conducting a risk assessment?

In the US, ANSI (American National Standards Institute) standards that define Risk Assessment, such as B100.0 2010 as well as RIA 15.06 2012, require that both the machine supplier and the user have responsibilities towards ensuring safety. OSHA strongly recommends that a risk assessment be conducted and that it should include the implementation of a plan for risk mitigation and that the entire process should be thoroughly documented to demonstrate due diligence. In the EU, the machine supplier is primarily responsible for ensuring that a safe machine is shipped. They will typically be the ones who conduct the basic risk assessment.

Q: Who should be involved in the risk assessment process?

Choose a diverse and well-respected group of individuals. Operators, maintenance, electrical, mechanical engineers, shift leads, production supervisors, and health and safety professionals are all potential candidates. These individuals should be empowered by an officer of the company who has the responsibility of allocating resources. Management must provide visible leadership to make this process credible.

Q: Can a consultant be hired to carry out a risk assessment?

Competent consultants can greatly enhance the risk assessment process, but the final responsibility for personnel safety is still that of the employer. Employees should also be trained to recognize hazards and act appropriately.
Q: When should a risk assessment be conducted?
Ideally a risk assessment should be conducted whenever changes are made, especially when new machinery or systems are introduced, new tasks are added or a new routine is devised. When adding new processes, evaluate what tasks may create the probability of a hazardous event.

Q: What needs to be assessed?
Everything should be assessed, not just the potential hazards. Look at the work environment, ergonomics, noise, etc. Keep all that in mind, in case of a violation or litigation, one must be able to demonstrate that the risk assessment was sufficient for the given hazard.

Q: How should this process begin?
The first thing that should be done is to get buy-in from front-line employees by explaining that the goal of a risk assessment is to have a workplace free of hazards. It should be emphasized that each employee is responsible for his/her own safety. It is a responsibility of the employee to report any recognized hazards.

Q: What can be done to reduce the risk of injury on hard-to-guard hazardous machines?
Do what is feasible from a design standpoint. Implement safeguards, use personal protective equipment, raise the general level of awareness of the hazard, and develop safe work procedures for all tasks where the hazard cannot be eliminated or controlled. The end result should be to achieve a tolerable level of risk.

Q: How should risks be prioritized?
Priority should always be given to the highest risk hazard. An ergonomic work station is less of a priority than an unguarded stamp press.

Q: How do you determine which hazards are worse than others?
Industry risk assessment models are designed to assist with this process.

Q: What industries use risk assessments?
Risk assessments are conducted in many different industries where workplace accidents must be minimized and where product quality and performance are critical. Some of these industries have made an effort to standardize a process for evaluating risk, including:
- Metal forming/cutting
- Medical devices
- Robotics
- Insurance
- Aerospace
- Semiconductor
- Transportation

Q: Do small companies need to record the results of a risk assessment?
Yes, it is strongly recommended that all companies, regardless of size, thoroughly document any risk assessments that they conduct. If a safety-related incident should happen to occur, this documentation can be used to demonstrate that a risk assessment was done properly and that all necessary risk mitigation strategies were put into place.

Q: Do OEMs need to perform a risk assessment?
Yes. It is a minimum responsibility to consider risk associated with all reasonably foreseeable use and/or misuse of equipment and to design out or minimize these risks where feasible. OEMs have a duty to their customers to make them aware of any residual risk associated with the operation of equipment.

The end-user should reduce any further identified risk through additional safeguards and administrative measures including supervision, warning signs, and training.

Q: How can the accuracy of a risk assessment be verified?

Generally, a risk assessment can be considered accurate if it can be demonstrated that all the minimum requirements established by an industry have been met or exceeded and that results are periodically reviewed and confirmed.

Q: How can one be certain of compliance with standards in other countries?

Most countries have adopted ISO (International Organization for Standardization) standards. If you have conducted a good risk assessment, it will satisfy standards in most countries.

Q: Where does a risk assessment fit into the safety program?

A risk assessment is listed in OSHA’s proposed safety program rule as the second of the five core elements of a safety program. It immediately follows management leadership and employee participation.

Q: What is an FMEA?

A Failure Mode and Effect Analysis (FMEA) is one specific procedure used to conduct a risk analysis. When identifying hazards, it is sometimes necessary to look systematically at the components that control the hazard or protect people from the hazard. Valves slow down, brakes wear out, mechanical door switches can fail, etc. If components are relied upon for safety, the failure modes and their effect on safety must be analyzed.
Summary

The chapter tries to define the type of safety needed in the factory. There is no need to provide the same equipment as is provided for a rocket to the moon – especially one carrying human cargo. However, equipment is to be safe and the need for safe PLCs has grown through the years.

The German BGIA approach is introduced. If one were to design a system especially for the European market, these documents would be essential. Moving the machine from Europe to the US will show many of the techniques employed to meet the standards of the EU.

There is included a major lab demonstrating the implementation of the safe PLC by Siemens. The S7-1200 is used. Version 14 software is available. GO FOR IT!
Questions

1. The following is a two-hand control station by Schneider Electric. Describe how this function has been moved into the PLC. Be specific.

 Schneider Electric XPSBF1132P

 SAFETY RELAY FOR TWO HAND CONTROL STATIONS, OUTPUT: 2; AUX: 2 SOLID STATE; 24VDC

2. The following describes how an input, logic and output interacts in a safety circuit for Siemens. Describe how logic can be guaranteed to be safe in this configuration. In your answer describe both logic written by the user and logic approved and provided by the manufacturer.

3. There was a chart comparing Categories (Cat) with SIL values. Show the comparisons between the two and show where fail-safe is required.

 At what level is the power-supply incorporated into the safety hardware?

4. If you were to walk up to a Siemens PLC or an Allen-Bradley PLC, what would give you an indication where the safety I/O is housed? Give an example of each: