A Special Section on Nanostructured Ceramic Oxides: Challenges and Opportunities

Developing advanced functional materials and devices with controlled features on the nanometer scale is at the core of R&D innovation. Unique electronic, optical, magnetic, as well as chemical properties of nano-scale materials are making these materials attractive for the new generation of devices. There is ample evidence which suggests fundamentally new behavior in nanomaterials that cannot be predicted by simple scaling laws. Semiconducting nanoclusters display interesting optical, electronic, and chemical properties, making them potential candidates for sensing, catalysis, and optoelectronic devices. Also, while conductivity enhancement by several orders of magnitude is seen in some nanocrystalline oxides, improved chemical and photo-chemical activity is evident in other nanostructured oxides due to enhanced surface area. However, the widespread utilization of nanostructured materials is often complicated by the conflicting demands for precise control of superfine features and large-scale production.

The trend towards miniaturization in the electronic and semiconductor industry has placed a demand on technologies and processes which can not only approach the scale of interest, but do so in an efficient manner. Since the discovery of the integrated circuit (IC), the number of devices per square inch has doubled annually. This has led to the development of patterning techniques such as e-beam lithography, ion-beam lithography, and dip-pen nano-lithography, which have enabled feature definition in the nanometer scale with good pattern fidelity. These processes, however, require expensive equipment and skilled technicians. Also, it is a challenge to scale-up to cover large surfaces in short time frames; these drawbacks sometimes limit their commercial viability.

This special section focuses on the fabrication of nano-structures of ceramic oxides using non-lithographic approaches. Due to their exceptional properties, the ceramic oxide nanostructures are ideal platforms for a variety of applications such as catalysis, sensors (gas, bio-, chemical, etc.), electronic and energy device applications, antimicrobial functions, environmental, biomedical, transportation, chemical manufacturing applications, and more. The fabrication methods covered in this special section represent recent innovations in nano-processing which integrates cutting edge expertise and resources in ceramic processing, non-lithographic approaches in micro- and nano-fabrications, microscopy, and other advanced characterization techniques.

Papers in this special section can be broadly classified into two groups; some focus on exotic synthesis and fabrication processes of nano-materials and nanostructures while others deal with their applications. The review by Choi and Lee presents a novel approach for the formation of various self-assembled structures such as hollow and hierarchical nanostructures using amino acid-assisted reaction. In another paper, Haq and Azad present a comprehensive description regarding the experimental strategy for making various pure and coated
A SPECIAL SECTION

systems of monodispersed metal basic carbonate/metal oxide particles of important ceramics by using a urea-based homogeneous precipitation process. While these fall under the so-called wet-chemical synthesis category, the review by Ansari and Akbar focuses on a simple process that can be classified under surface modification techniques. They describe a process for the creation of self-assembled ceramic nano-islands by a strain assisted solid-state dissolution-precipitation process. Finally, the paper by Roselin, Selvin, Annesh, and Bououdina discusses the fabrication of hierarchical silicalite-1 possessing three generations of micro-, meso-, and macro-porosities through a dual-template approach using tetrapropylammonium hydroxide (TPAOH) and styrene butadiene rubber (SBR) latex particles as micropore and macropore templates, respectively.

On the application side, papers range from novel design of devices to measuring their performances. The article by Sundararajan and Azad focuses on the development of robust sulfur tolerant catalysts by selecting a non-traditional nanoscale ceramic support and recognizing its synergistic role towards improved on-stream performance in conjunction with the actively operating intermetallic cooperative phenomena among the noble metals present in them. In another paper, Andio, Beach, Morris, and Akbar discuss deposition of metal oxides with hierarchical nanostructures produced by hydrothermal and solvothermal synthesis methods. Furthermore, there are several papers focused on sensing applications. Gouma’s article reviews the effect of polymorphism on gas specificity and the importance of nanoscale processing for stabilizing the desirable oxide phases while introducing a gas-polymer-pseudomorph selection library for building the next generation of gas sensing systems with inherent selectivity. The paper by Matsubara, Shin, Izu, Nishibori, and Itoh presents gas sensing based on In$_2$O$_3$ nanoparticle thin films hybridized to an organic component with various types of functional groups which has promise for realizing gas selectivity.

Kale’s paper concerns a mixed potential sensor for the detection of CO gas where hydrothermally synthesised nanostructured tin doped indium oxide (ITO) is employed as a sensing material. In another paper, Xiaojun, Ooi Kiang, and Man Siu focus on the development of metal oxide based immunosensors using a BST sensing platform. Finally, the article by Wang, Lu, and Lai reviews the pyroelectric fundamentals for thermal infrared detection and the state-of-the-art on oxide-based pyroelectric materials for their application in dielectric bolometers.

We are grateful to the authors for their contributions and cooperation in adhering to the timetable. The fact that they were invited to write on selected topics is a clear recognition of their reputation in the area. As is often the case, scientific writing does not associate financial rewards. The greatest reward is, perhaps, being able to inspire young minds through our insights; the authors will be greatly appreciated for sharing their knowledge. The reviewers are particularly acknowledged for their time in critiquing these papers. Special acknowledgement goes to Professor Ahmad Umar, Editor-in-Chief of Science of Advanced Materials, for his vision, guidance, and cooperation throughout the process of this publication. Finally, we acknowledge the Editorial Office at the American Scientific Publishers for making this idea a reality.

ABOUT THE GUEST EDITORS

Sheikh A. Akbar is a Professor of Materials Science and Engineering and Founder of the National Science Foundation Center for Industrial Sensors and Measurements (CISM) at The Ohio State University in Columbus, OH, USA. His recent work deals with synthesis-microstructure-property relations of ceramic bulk, thin-film and nano-structures. Dr. Akbar was the Chair of the 12th International Conference on Chemical Sensors (IMCS-12) in 2008, a meeting attended by 330 participants from more than 30 countries. His sensors received three (3) R&D 100 Awards as part of the 100 best inventions of 2007 and 2005 selected by R&D Magazine and 2005 NASA TGIR (turning goal into reality) award. Dr. Akbar is the recipient of the 2002 W. E. Cramer Award of the Central Ohio Section of the American Ceramic Society, 2002 Tan Chin Tuan Fellow of Nanyang Technological University in Singapore and 2001 Fulrath Award of the American Ceramic Society. He was elected a Fellow of the American Ceramic Society in 2001. He also received the 1993 B. F. Goodrich Collegiate Inventors Award for the development of a rugged and durable CO/H$_2$ sensor; one of three national awards. Dr. Akbar served on the International Advisory Committee of CIMTEC conferences, Steering Committee of the International Conference on
Akbar et al. A Special Section on Nanostructured Ceramic Oxides: Challenges and Opportunities

Engineering Education (ICEE), Technical Steering Committee of the US-DOE Sensor and Controls Program and the Steering Committee of the US-Japan Conference on Sensor Systems for the 21st Century. He has co-organized sensor symposia for the American Ceramic Society, the Electrochemical Society, ICMAT (Singapore) and ICC3 (Japan). Dr. Akbar has co-edited 2 books on sensors. In 2003, he served as the Guest Editor for two special sections of the Journal of Materials Science, “Chemical Sensors for Pollution Monitoring and Control” and “Chemical and Bioceramics.” He is on the Editorial Board of Ceramics International and Sensor Letters. He is also an Associate Editor of the Journal of Nanoengineering and Nanomanufacturing. He has developed a lecture series on “Oxide Nano-structures, Thin-films and Chemical Sensing” that has been taught in many counties around the world. Dr. Akbar has published more than 160 technical papers and holds 8 patents.

Abdul-Majeed Azad is a Professor of Chemical Engineering at the University of Toledo, OH, USA. His current research pertains to the conception, development and exploitation of nanostructures in oxide ceramic systems for their application in diverse areas of catalysis for hydrogen generation from fossil and non-fossil resources, carbon dioxide beneficiation, gas sensing and orthopedic biomaterials. Dr. Azad served as the Chair of Technical Committee of the 12th International Conference on Chemical Sensors (IMCS-12) in 2008 that drew about 330 participants from more than 30 countries. He served as the Chair of the NW Ohio/Michigan chapter of the American Ceramic Society during 2004–2005 and helped revive the prestigious Toledo Glass and Ceramics Award. He serves as one of the co-chairs of the Emissions 2011 organized by the Global Automotive Management Council (GMAC) in Ann Arbor, MI, and a co-organizer of the annual Materials Science and Technology (MS&T) Conference and Exhibition since 2007. He is on the Editorial Board of the International Journal of Nanomanufacturing (Inderscience) and Journal of Nanoengineering and Nanomanufacturing (American Scientific Publishers) and serves as an Associate Editor for Reviews in Advanced Science and Engineering (American Scientific Publishers). Dr. Azad is the recipient of the NASA Tech Brief’s Nano50 Award in 2007, University of Toledo’s Outstanding Faculty Researcher Award in 2009 and College of Engineering’s Faculty Excellence Award (2010). He is also the Fullbright Distinguished Chair in Alternative Energy Technology at the Chalmers University of Technology, in Gothenburg, Sweden for 2010–11. Dr. Azad’s research has been funded by agencies such as Department of Energy, National Science Foundation, The United States Army, NASA Glenn Research Center, Ohio Department of Development, Edison Materials Technology Center, as well as from a number of industries (Catacel Inc., Essential Research Inc., First Power LLC, Total Compliance LLC, DePuy Spine and others). He has published more than 130 technical papers and holds 3 patents.

Jong-Heun Lee received his B.S., M.S., and Ph.D. degrees from Seoul National University in 1987, 1989, and 1993, respectively. He joined the Department of Materials Science and Engineering at Korea University as an Associate Professor in 2003, where he is currently a Professor. Between 1993 and 1999, he worked at the Samsung Advanced Institute of Technology, where he developed automotive air-fuel-ratio sensors. He was a Science and Technology Agency of Japan (STA) Fellow at the National Institute for Research in Inorganic Materials (currently NIMS, Japan) from 1999 to 2000 and a Research Professor at Seoul National University from 2000 to 2003. Dr. Lee received the ‘Ji-Seok-Young Prize’ (best invention patent award) from Korean Patent Office in 2001. His current research interests include the design and preparation of functional oxide nanostructures, chemical sensors using oxide semiconductors, impedance spectroscopy, and solid oxide electrolytes. He serves as an Asian Associate Editor for “Journal of Nanoengineering and Nanomanufacturing” (JNAN: http://www.aspbs.com/jnan/) and as an Associate Editor for “Reviews in Advanced Science and Engineering” (RASE: http://www.aspbs.com/rase/). Dr. Lee has published more than 150 technical papers and holds 20 patents.

Girish M. Kale is a Reader in Solid State Ionics in the Institute for Materials Research of the School of Process, Environmental and Materials Engineering at the University of Leeds in the United Kingdom. After obtaining his Ph.D. degree from the Indian Institute of Science, Bangalore under the supervision of Professor K. T. Jacob, Dr. Kale worked in close association with Professor Derek J. Fray (FRS, FREng) of Cambridge University for several years before independently establishing himself at Leeds. His research interests are in chemical and biological sensors, tomographic sensors for multiphase flows, biomaterials, novel routes for nanomaterials synthesis, characterization and application and, Materials Chemistry. He has been involved in organizing six symposia at international conferences in USA (ACerS and ECS) and Singapore (ICMAT 2007). His research work is supported by EPSRC, The Royal Society, The British Council, The Royal Academy of Engineering, The European Union program and a wide range of metallurgical and ceramic industry within the UK. Dr. Kale has served on the Editorial Board of the *International Journal of Applied Ceramic Technology* and, *Metallurgical and Materials Transactions*. He is a College member of EPSRC. He also serves as an Executive Committee member of the Sensors Division of the Electrochemical Society and as a Chair of Awards Committee of Sensors Division of the Electrochemical Society. Dr. Kale has been a recipient of ASM – IIM Lecturer award in 2001. He has been a Distinguished Fellow of Max-Plank Institute für Metallforschung in 2002. He is also an Honorary Professor at the Hebie University in China since 2006. Dr. Kale has been the Editor of two symposia proceedings of major international conference one each organized in USA and Singapore. He has published nearly 100 research articles and presented more than 60 papers at international conferences worldwide. He has two generic patents to his credit in the area of sensors.