For immediate release

Dr. Ioan Marinescu presents the first diamond grinding wheel produced within PMMC

The first two diamond metal bond grinding wheels produced within PMMC

PRECISION MICRO-MACHINING CENTER ANNOUNCED
THE FABRICATION OF THE FIRST TWO DIAMOND METAL BOND GRINDING WHEELS FOR ULTRA-PRECISION GRINDING

Toledo, OH, May 29, 2001 - Precision Micro-Machining Center (PMMC) of the University of Toledo (Ohio) announced the design and fabrication of the first two diamond metal bond grinding wheels for ultra-precision and mirror-like surface grinding. According to Dr. Ioan Marinescu, The Director of the PMMC, the wheels were designed for Electrolytic-In-Process-Dressing (ELID), a new technology for abrasives processes using very fine diamond and CBN grits, developed in the PMMC as a joint venture with Institute of Chemical and Physical Research (RIKEN) of Japan. This technology will replace lapping and polishing in addition to improvement of grinding for most of the steel, ceramics and glasses parts.

Want to know more about the extent of PMMC activities? It’s worthy to pay a visit to the PMMC Web site at: www.eng.utoledo.edu/pmmc.

For more information contact:
Christian E. Spanu
Precision Micro Machining Center
College of Engineering
Nitschke Hall, # 4006
Toledo, OH 43606
Tel.: (419) 530-8155
Fax: (419) 530-8206
cspanu@eng.utoledo.edu

PMMC is an integrated industry-academia research center. Its aim is to conduct research and development of micro-machining processes and technologies in order to facilitate their use in industry. Currently, it is attached to College of Engineering, University of Toledo in Ohio. The Precision Micro-Machining Center is in direct response to the increasing need of the industry for improving machining technology for difficult-to-machine materials. This center is mainly focussed on processing components requiring surfaces with roughness and tolerances at sub-micron and nano-meter levels. PMMC combines the resources and capabilities of industry, universities, and government agencies in a partnership to develop enabling technologies for efficient use of micro-machining. Industry co-operation helps to direct research programs and to address critical technological problems while university expertise is applied to micro-machining research for the benefit of all participating companies.