SELECTION OF CUTTING CONDITIONS AND TOOL FLOW IN FLEXIBLE MANUFACTURING SYSTEM

F. CUS¹ and J. BALIC²

1 - Assoc. Prof. Franci CUS D. Sc., University of Maribor, Faculty of Mechanical Engineering Smetanova Ul. 17, SI-2000 Maribor, Slovenia, Phone: (+386 62) 220-7500, Fax: (+386 62) 220-7990, e-mail: franc.cus@uni-mb.si

2 - Prof. Jože Balič D. Sc., University of Maribor, Faculty of Mechanical Engineering Smetanova Ul. 17, SI-2000 Maribor, Slovenia, Phone: (+386 62) 220-7500, Fax: (+386 62) 220-7990, e-mail: joze.balic@uni-mb.si

Key Words: cutting condition, optimisation, data bases, tools, cutting tool flow, FMS, simultaneous engineering

ABSTRACT:

The contribution presents the determination and selection of optimal conditions reducing the manufacturing costs. The data can be selected from different bases and are optimized with respect to boundary conditions of the own production. By taking into account the simultaneous engineering method it is necessary to carry out integrated and parallel activities of the detail design and production process. For building the tool data bank the “specialties” of the own production are taken into account. For the analysis of the tool and workpiece flow the principle of “virtual production” is considered. Accurate cost analyses are made for planning of the needs. In the processes of simultaneous optimization all requirements and the technology strategy are considered in order to meet the criteria of low costs and maximum quality. The researches and the results were tested in the reel production environment.

1. INTRODUCTION

Today it is of decisive importance for production companies to be and to remain competitive in turbulent market conditions. The increased pressure of the market and the intensive global competition compel the companies to react quickly to the requirements and expectations. To reach successes it is necessary to change the company’s strategy so that the development and production processes are adapted and the cost advantages of flexible automation realized [1, 2, 3, 4].

2. METHODS FOR REACHING OPTIMAL TARGETS

The simultaneous engineering is the integrated and parallel execution of the detail design and production processes, Figure 1.

Figure 1: Simultaneous engineering method
The volume and, even more important, the time coordination of technical changes are a key to success. The later the changes in the development and production process, the higher the costs and loss of time for the individual changes. During the development stage, the changes on the CAD monitor are very simple, but when hard tooling follows, they are very expensive and demanding with respect to time. The simultaneous engineering requires the multidisciplinary teams mastering all functions and responsible to ensure that the new product comes onto the market.

Efficiency of the engineering data management “the key to introduction of the simultaneous engineering. The engineering data management” a further step to reducing the time up to placing the product onto the market and preventing the defects and delays. The data are not only the CAD/CAM drawings but also all graphic and textual information, e. g. Reihart [6]. A complete turning point in thinking begins in the area of the production planning, since modern communication technologies ensure production in a virtual factory. Figure 1 confirms the present development where the notions “virtual realities”, “virtual products” or “virtual markets” do not represent anything physical but exist only in the observer’s thinking world as a result of his thinking power.

3. SYSTEMATIC COLLECTION AND DETERMINATION OF CUTTING CONDITIONS

To be able in production to follow up the requirements for smallest possible costs it is urgently necessary to determine the optimal cutting conditions Cus at. al. [7], to select the cutter material, the clamping devices and to utilize the machine to the greatest possible extent. Figure 2 shows a systematic approach to selection of cutting conditions for a medium-size company. On the basis of the hitherto experience in own production, or on the basis of tests executed in a special experimental department or by direct access through INTERNET, the individual cutting conditions are collected in the Information centre for cutting conditions which is a part of the tool management system. Here the data are collected, verified, processed and organized in suitable bases. The data are accessible to each department within the company according to the open cooperative computing strategy particularly for simulation of machining, simulation of loadings and of clamping the workpiece and tools.

4. BASIC DATA FOR BUILDING THE TOO DATA BANK

As there are many bidders of cutting tools on the market, it is very hard to remain independent of the individual maker. Many factories do not like the monopoly of a single tool supplier, therefore they combine purchases from several suppliers [8]. In this way they can heat down the price of tools and obtain the best quality.

Of course it is very important to have an own tool data base. This is also a competitive advantage, since some materials have specific features of machining which only we master. In spite of globalization of data some specialities will remain only ones, adapted to our knowledge and production resources. As we do not want to disclose them, we frequently lay the foundations for own tool data base. Figure 3 shows which basic questions we have to answer ourselves. Here it is necessary to include the knowledge of the most experienced technologists carefully following up all
problems in industry. Many data are very precious already in the stage of the detail design of product, therefore in the simultaneous engineering system they are accessible to the people from the design offices [9].

5. TOOL AND WORKPIECE FLOW IN PRODUCTION PROCESS

The term “virtual factory” is no more only the subject of discussions in science and industry but it has become reality for reduction of costs, saving of time, increase of quality and flexibility. It is a fact that there is no production without tools [10]. Today the tool and workpiece flow in production can be simulated by modern information supports.

The “virtual products” can be followed up throughout production up to the final product, Figure 2. At any point of the process they can be simulated in suitable shape and can be logistically followed up. It is also possible to follow up the entire tool flow in the production process the required quantities can be found out, the logistical support for new and used up tools determined and all details for optimal production defined [11, 12]. This is an excellent support of the S. E. system, in particular, when it is necessary to switch over from virtual production to the real product.

In modern flexible systems it is possible to work out several alternatives for production, to select the best alternative or even to combine several alternatives for the optimal solution.
17]. Figure 6 diagrammatically shows the dependence of portions of consequences and causes on the minimum cost production. It is a fact that the tool costs influence the entire manufacturing costs. In our researches in companies and particularly, in tool shops we found that these costs are often forgotten. This is caused by specific features of production, since some tools are used only once and in books they are specified as consumable material, though their purchase price is high. After thorough analyses in some companies the annual tool costs were reduced for 20 – 30 %.

8. OPTIMIZATION PROCEDURES FOR VIRTUAL AND REAL PRODUCTS

In the product design process various aims are pursued: high quality, high physical requirements, small consumption of materials and low costs. Figure 7 shows diagrammatically the principle of the pursuit of largest and other parameters required for optimization of procedures. In the S. E. system the optimization parameters are known: these are the minimum costs and the maximum productivity.

![Figure 6: Influence of tools on minimum cost production](image)

![Figure 7: Simultaneous optimization procedures](image)

In the numerical calculations of the product it is important to make simulation calculations because of loadings occurring as a result of clamping and cutting process [18, 19]. Frequently the maximum cutting forces cause the workpiece deformation. In practice this was tested many times and it was found that beval quality of the product is the result of deformations in machining. By suitable corrections and modifications of clamping the specified tolerances were reached. Also the modern cutter materials assure high cutting speeds where high loadings occur and in particular, the old machines are too little rigid for such good cutter materials.

The synergic effect of the S. E. system ensures great reductions in all areas. We reached excellent results on an example of a pilot project of the tool shop making modern tools for cutting plate components for the automobile industry. The costs of the individual parts were reduced for 42 %, the assembly times shortened for 67 %, the product performance was improved the assembly automated and the design efficiency increased for 20 % etc.

9. CONCLUSION

The production companies will have to adapt them selves to the requirement for economical use of time and money [1, 20, 21, 22, 23, 24]. The simultaneous engineering makes possible the shortening of the time necessary to prepare a new product with higher added value for the market. In the contribution we presented the summaries and experience based on our researches in the area of determination of optimum cutting conditions and tool flow in flexible manufacture. It was proved that some radical changes of ways of thinking, some kind of paradigm shift, facilitating the work, are necessary. By analytical work, gradual steps, organizational changes and clearly defined responsibilities we reached excellent results. Only thanks to our activities in companies the synergie effects and the pursuit of joint targets were assured. This was a great encouragement and
satisfaction to us, therefore we continue intensive
researches and concrete work in practical.

10. REFERENCES

1. Gindy, N. N., Saad, S. M., Flexibility and
responsiveness of machining environments,
9/4, pp218-227

2. Maylor, H., Gosling, R., The reality of
concurrent new product development,
9/2, pp69-76

3. Peng, C., Chen, F. F., Real-time control and
scheduling of flexible manufacturing systems:
an ordinal optimisation based approach, The
international journal of advanced
manufacturing technology, Springer London
1998, no. 14, pp775-786

4. Couers, D., Wirtschaftliche Fertigung,
Werkstatttechnik, 1998, no. 6, pp290-292

5. Balic, J., Cus, F., Simultaneous engineering for
die-mold industry; a practical approach,
Flexible automation and intelligent
manufacturing, editors Leon F. McGinnis, New
York, Begell House, 1996, pp285-294

6. Reinhart, G., Fertigen Wir morgen im
Cyberspace, Fertigung, no. 10, 1997, pp82-84

7. Cus, F., Kopac, J., Inclusion of geometrical
shape of cutter into optimization of milling
10/11, pp602-610

8. Cus, F., Sokovic, M., Kopac, J., Balic, J.,
Model of complex optimization of cutting
conditions, Journal of materials processing
technology 1997, Vol.64, no.1/3, pp41-52

9. Welgama, P. S., Gibson, P. R., Computer-aided
facility layout - a status report, The
international journal of advanced
manufacturing technology, Springer London
1995, no. 10, pp66-77

10. Balic, J., Pahole, I., Cus, F., Optimization of
intelligent FMS using data flow matrix
method, The 14th International conference on
production research, Osaka, Institute of
Technology, 1997, pp 984-987

11. Grote, K. H., Walo, M. L., Miller, J. L.,
Manufacturing and product development in the
USA, in particular in the L. A. Basin and the
strategic training and implementation of high
manufacturing technology, Integrated
manufacturing systems 1998, no. 9/4, pp228-
235

additional part to optimal schedule, Integrated
manufacturing systems 1998, no. 9/3, pp193-
196

13. Cus, F., Balic, J., Process orientierte
Reorganisation der Werkzeugverwaltung, GEP,

14. Paurbabai, B., Loading Strategies for a Class of
Just-in-Time Manufacturing System,
International Journal of Advanced
Manufacturing Technology, 10, 1995, pp64-51

15. Dave, A. K., Naik, D. B., Multipass,
multicriterion optimisation and turning, The
international journal of advanced
manufacturing technology, Springer London
1998, no. 14, pp544-548

16. Mesquita, R., Krasteva, E., Doytchinov, S.,
Computer-aided selection of optimum
machining parameters in multipass turning,
The international journal of advanced
manufacturing technology, Springer London
1995, no. 10, pp19-26

17. Abdou, G., Yien, J., Analysis of force patterns
and tool life in milling operations, The
international journal of advanced
manufacturing technology, Springer London
1995, no. 10, pp11-18

18. Towill, D. R., Cherrington, J. E., Learning
curve models for predicting the performance of
AMT, The international journal of advanced
manufacturing technology, Springer London
1994, no. 9, pp195-203

19. Lin, Z. C., Huang, J. C., The application of the
simulated annealing method and heuristic
algorithms in the selection of fixture elements,
The international journal of advanced
manufacturing technology, Springer London
1997, no. 13, pp191-205

intelligent process planning system for
prismatic parts using PC-based CAD and CAM
software packages, The international journal of
advanced manufacturing technology, Springer
London 1994, no. 9, pp166-174

21. Paurbabai, B., An optimal concurrent design
and loading strategy for a flexible assembly
line system: to control the bottleneck, The international journal of advanced manufacturing technology, Springer London 1994, no. 9, pp156-165

