
12 COMMUNICATIONS OF THE ACM | MARCH 2017 | VOL. 60 | NO. 3

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

doesn’t mean we make it easier to be-
come a doctor!” That made sense to
me, but then I heard others push the
metaphor a bit. Adding more nurses and
more physician assistants does improve
quality of care, and it is less expensive to
have more of these health care providers
than to produce enough doctors.

Only a few U.S. states offer CS teach-
er initial certification, which requires
a choice to become a CS teacher while
still an undergraduate and take years
of classes. Georgia and California, like
several other states, offer an add-on
certification (“endorsement”) teach-
ers can earn after gaining a certifica-
tion in something else. An endorse-
ment typically still requires multiple
semester-long courses. Utah has one
of the most innovative CS teacher add-on
certification schemes, with three levels:
an initial level that requires only some
summer professional development,
and two further levels requiring post-
secondary courses.

Leigh Ann DeLyser hosted a great ses-
sion about CSNYC and the new CS for
All Consortium. CSNYC is charged with

implementing Mayor Bill de Blasio’s ini-
tiative to make CS education available to
all students in all grades in all New York
City schools by 2025. DeLyser told us CS-
NYC is defining the Mayor’s initiative as
a school-based mandate. Even 10 years
and $81 million isn’t enough to provide
certified, full-time CS teachers in every
school so every student gets a CS course.

Rather, every school must offer to ev-
ery student in every grade a high-quality
CS learning experience. Maybe that’s a
full course, like the BJC CS Principles
curriculum now in NYC schools. Alter-
natively, it might be a Bootstrap unit in
an algebra class, or a CT STEM activity
that uses StarLogo to achieve NGSS sci-
ence learning goals. It’s a reasonable in-
cremental approach towards CS for All.

New Hampshire, one of the newest
ECEP states, is exploring micro-certifi-
cations. Rather than getting a certifica-
tion as a CS teacher, a mathematics or
science teacher might get a micro-cer-
tification to demonstrate proficiency in
using a computer science approach in
their teaching. There might be micro-
certificates in Bootstrap, CT STEM, or
Project GUTS for middle school science.

We want a future where computer
science is taught by certified teachers
and is as universally available as math-
ematics and science classes are today
in most U.S. high schools. That’s the vi-
sion Briana Morrison and I wrote about
in CACM (http://bit.ly/2iIFeEc). Along
the way, we need ways of growing CS
education where we develop teachers
who know about and teach computer
science, even if not full-time, certified
CS teachers.

Mark Guzdial
Taking Incremental
Steps Toward CS
for All
http://bit.ly/2gCFpSM
November 28, 2016

At the end of October, the Expanding
Computing Education Pathways (ECEP)
alliance organized a summit with the
White House Office of Science and
Technology Policy (OSTP) on state im-
plementation of the President’s CS for
All initiative. You can see the agenda at
http://bit.ly/2ifPVwY and a press release
on the two days of meetings at http://bit.
ly/2iMvyek. I learned a lot at those meet-
ings; one insight I gained was that the
CS for All initiative will succeed in incre-
ments. U.S. states are developing novel,
incremental approaches to CS for All.

The event’s second day was focused
on teams from the 16 states and Puerto
Rico in the ECEP Alliance. At a session
on teacher certifications, some of the at-
tendees were concerned with what they
saw as lowering standards in order to
get more certified teachers. “We have a
shortage of doctors in rural areas. That

The Slow Evolution
of CS for All,
the Beauty of Programs
Mark Guzdial considers the steps needed to reach the goal of CS for All,
while Robin K. Hill ponders the aesthetics of programming.

DOI:10.1145/3037383 http://cacm.acm.org/blogs/blog-cacm

http://bit.ly/2iIFeEc
http://bit.ly/2ifPVwY
http://bit.ly/2iMvyek
http://bit.ly/2iMvyek
http://dx.doi.org/10.1145/3037383

MARCH 2017 | VOL. 60 | NO. 3 | COMMUNICATIONS OF THE ACM 13

blog@cacm

Robin K. Hill
What Makes a
Program Elegant?
http://bit.ly/2e2U6yK
October 11, 2016
A subfield of philoso-

phy is aesthetics, in which we attempt
to understand beauty. Is beauty uni-
versal? Does it make us better people
somehow? Why do we focus on beauty,
not ugliness? A ready application of
this question to computer science (CS)
addresses program elegance. Most
programmers, or so I believe, would
agree some programs are elegant, and
elegant programs are better than oth-
ers, and experienced programmers, or
so I believe, generally agree on which
programs are elegant.

The criterion of efficiency looms
large in production programming, and
appears in comment on elegance on the
Web, for instance by Perrin (http://bit.
ly/2ih2IhR). A program should be brief,
but not a slave to brevity. An elegant
design artifact is sleek and spare in its
utility. An elegant program is minimal-
ly gratuitous. Consider Binary Search
(of an ordered sequence) as opposed
to Sequential Search, or Quicksort as
opposed to Insertion Sort (http://bit.
ly/2j7ldcx). Sequential Search tediously
examines each (ordered) item, but does
not have to; Bubble Sort tediously ex-
changes many items that will have to be
moved again. To find the first n prime
numbers, we can tediously test each
for divisors or we can deploy the Sieve
of Eratosthenes. Efficiency helps make
the Sieve, Binary Search, and Quicksort
elegant. We have our first criterion for
elegance, (1) minimality, encompassing
both shortness and simplicity.

Let’s avoid features of programs
depending on source code syntax, or
compilers, or I/O mechanisms, or mem-
ory handling. A program that minimizes
temporary variables, directly evaluating
expressions instead, is “better,” but we
do not address the question of aesthet-
ics at that level, nor at the level of self-
describing identifiers, nor documenta-
tion, nor modularity, nor design pat-
terns. A program also becomes better as
it includes more error-checking, which
does not strengthen, and may weaken, its
elegance even as it enhances its quality.

Simplicity by itself can’t be enough;
Bubblesort is a simple program. (I would
count Boyer-Moore String Search as el-

egant, though it’s complicated.) Brevity
by itself can’t be enough; the C loop con-
trol while(i++ < 10) is terse, excelling
in brevity, but its elegance is debatable.
I would call it, in the architectural sense,
brutalism. Architecture provides nice
analogues because it also strives to con-
struct artifacts that meet specifications
under material constraints, prizing es-
pecially those artifacts that manifest
beauty as well (http://bit.ly/2j8AMkN).

A factor that looms larger in CS than
in architecture or other disciplines is
correctness. A building may be regarded
as elegant even if marginal parts of it are
uncomfortable, but no program that
does not work is regarded as elegant.
This gives us another criterion, (2) ac-
complishment—the program does what
it is supposed to do. Though included in
the list of desiderata here, failure on that
criterion is fatal rather than detrimental.

Constraints under which program-
ming is done impose a context without
which the elegance cannot be appreci-
ated. We must understand the problem,
the tools, and materials, to appreciate
the solution. Expertise is necessary. Ex-
amining many student programs over
many years refines an appreciation ever
more impressed by work that does it all
with graceful assurance and economy.
Elegance, therefore, is doubly relative—
to the context of the work and to the
background of the observer.

Bitmap Sort, as presented by Jon
Bentley (http://bit.ly/2ikzqSE) in a classic
“Programming Pearls” column, is still
worth studying. To sort n unique integers
in a fixed range 0 to m, we rearrange them
through a comparison-based sort such
as Quicksort, or we initialize a bit array,
indexed by 0 to m, to false, and then for
each integer input, flip its bit to true. A
pass through the resulting array, during
which the indices of the true bits are out-
put, gives us the sorted list. This is nice,
and elegant, even relative to Quicksort,
but only works on a set of unique values
(as described); recognition of situations
that meet that restriction distinguishes
the programmer of elegance.

We are ducking hard questions
about implementations at various levels
of translation, and whether they should
count toward or against elegance, and
we will continue to do so. In fact, what
I have been describing is not programs
in source code terms, but algorithms.
Brevity, or minimality, is a salient fea-

ture of code, but a subtle feature of al-
gorithms; what we want is minimality in
terms of the solution, however that solu-
tion is expressed. Yet another more gen-
eral concept of spareness is at play in
elegance, something like restraint. This
gives us a criterion of (3) modesty. An ex-
ample that flouts it comes right off the
very first page of another classic, Ker-
nighan and Plauger’s Elements of Pro-
gramming Style (http://bit.ly/2ikHDq8):

DO 14 I=1,N DO 14 J=1,N 14 V(I,J)

= (I/J)*(J/I)

This exploits the FORTRAN com-
piler’s truncation of integer division re-
sults to populate a matrix V with zeroes
everywhere except the diagonal, where
the values are one; that is, it initializes V
to the NxN identity matrix. This is clever
and short, but oh, dear, it’s implemen-
tation-dependent, therefore fragile; it’s
obscure and ostentatious. Such virtu-
osity is unfortunate, yet hard to resist.
(Kernighan and Plauger propose the ob-
vious initialization to zero throughout,
followed by a loop that assigns the value
one to each V(N,N).)

What else counts? An elegant pro-
gram confers a sense of satisfaction, of
enlightenment. Let’s call this criterion,
especially characteristic of program
artifacts, (4) revelation—the program
shows us something new about its
task, or brings to the fore something
we forgot. Eratosthenes’ Sieve shows
us, or reminds us, multiples are the
“not-primes.” Bitmap Sort shows us,
or reminds us, the integers are already
ordered; they come as a sequence, so
sorting can be accomplished by an in-
dication of presence only. Boyer-Moore
String Search shows us strings are just
as distinct backward as they are forward.

The criteria for program elegance
suggested here are (1) minimality, (2)
accomplishment, (3) modesty, and (4)
revelation, all rooted in the particulars
of the problem. Are these criteria neces-
sary? Sufficient? Inadequate? Because
of dependence on the problem at hand,
sometimes with complex circumstanc-
es, a wide range of examples of elegant
programs is difficult to come by. What
exemplars stand out in your world?

Mark Guzdial is a professor at the Georgia Institute of
Technology. Robin K. Hill is an adjunct professor at the
University of Wyoming.

© 2017 ACM 0001-0782/17/3 $15.00

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

